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APPENDIX B

ROCKET VEHICLE PERFORMANCE

B.1 INTRODUCTION

In the determination of a missile's flight

path, ground-based instrumentation dispersed over

several sites generally allows more flexibility and

greater accuracy in data reduction than measuring

systems concentrated at a single location. In

addition to providing less accuracy, single-site

systems frequently fail to yield sufficient data

for position determination without the introduction

of constraints such as parabolic or elliptical

motion. To arrive at a trajectory under single-

site conditions, it becomes necessary to assume

that the motion of the missile may be characterized

by a set of parameters which are functionally re-

lated to the measured quantities. A solution is

possible if there are at least as many observations

as parameters, and if the resulting system of con-

dition equations is sufficiently independent.

The reduction and analysis of a large portion

of the observed rocket trajectory data for Projects

6.2, 6.3, and 6.4, was based upon the flight paths

GSECRET
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and declassification RESTRICTED DATA



of the missiles as a function of time. For many

rockets, the various missile tracking systems

operating at or near Johnston Island failed to

provide adequate coverage to meet all trajectory

requirements. Therefore, it became necessary

to develop methods of position determination from

a combination of various measurements or obser-

vations. Frequently, these observations were

neither of sufficient quantity nor quality to

permit a high order of accuracy. Fortunately,

most of the rocket measurements of atmospheric

and event parameters could tolerate moderate

errors in position determination,provided that

the differential in position varied smoothly.

In view of the relatively lax requirements for

accuracy and the limited precision of the

observations, it was considered reasonable to

characterize the drag-free portion of the tra-

jectory by simple parabolic motion.

B.2 TRAJECTORY PARAMETERS

With the assumption of parabolic motion with-

in a plane, the reduction problem became two-

IL
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dimensional. If p is defined as the horizontal

coordinate and y as the vertical, the equationsof

motion are,

P = PO + 0(t-to) (B.1)

Y = Yo 0 (t-to)-
I/2 g (t-to)2  (B.2)

where Po and y0 are the position coordinates, and

40 and 1 are the velocity components for the

initial time to . The time variable is t and -g is
0P

the vertical component of acceleration resulting

from the force of gravity which is assumed constant

for each trajectory determination, but variable

from rocket to rocket. For convenience, let

* T = (t-to ) so that the above equations become

P = Po+&o T (B.3)

y = yO+jo T - 1/2 g (B.4)

The velocity components are obtained by differ-

entiating the last two equations.

= (B.5)

y= o- g T (B.6)
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Hence, if the parameters Po' Yo P00 and yo can

be evaluated from the observed data, position and

velocity are determined as a function of time by

the last four equations.

B.3 TRAJECTORY SOLUTIONS

A complete solution, for the problem as formu-

lated, consisted of using the measured data to

evaluate Po0 Yo' ,o and Y0  the trajectory

parameters. This required the derivation of a

system of equations of condition which related the

trajectory parameters to the observed data. Since

Equations B.3 through B.6 relate the position and

velocity components of the missile to the trajectory

parameters and time, it is necessary to initially

establish a functional relationship between the

measured quantitites and the missile's position and

velocity. It was sufficient for the rocket flights

here discussed to express the slant range r, and

the elevation angle E, in terms of the position

coordinates, while developing in terms of both

the position coordinates and the velocity components.
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The equations follow:

r = +y2 (B.7)

C = tan- (y/p) (b.8)

r = (p;+y )/r (B.))

Combining the above equations with Equations B.3

through B.6, there result:

r = /(po+;oT)2+(y0 +oT-1/2gT2)2 (B.10)

c = tan-1 [(yo + T-i/2gT2 )/(p +; T)] (B.11)

= (UEo+;0T)(; o) + 0 T-1/2gT2)(9o-gT)] X

0[o+;oT)2+(yo+YoT-1/2 gT2)2] (B.12)

In particular, when t = to so that T = 0, Equations

B.10, B.11, and B.12 reduce to:

ro = (B.13)

Co = tan- (yo/Po) (B.14)

re = (popo+y 0 0 )/ro (B.15)

4
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where ro, cog and ro arerespectively, the slant

range, the elevation angle, and the component of

velocity in the direction of the radius vector at

time t = to . The equations of condition were ob-

tained by substituting measured data in one or more

of Equations B.10 through B.15 or in equations

derived from various combinations of these. If

more than four observations were available the

system would be over-determined, and in general,

would require rather extensive computation. In

selecting a set of equations of condition, caution

was required to avoid a system in which the equations

were so nearly dependent that they failed to yield

a reliable solution. For example, observations of

slant range for four times at the same site

generally provided a very weak solution. Likewise,

poor results were experienced from a set of

observations consisting of elevation angle measure-

ments for four times at a single location. However,

several combinations of single-site observations

provided useful results. Computational methods for

three of these will be considered in detail below.

If measurements of either slant range or its

first time derivative are available for the major
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portion of a missile's trajectory, together with

the elevation angle for at least the initial

portion of the flight above the effective atmosphere,

its trajectory may be determined from measurements

of ro, o' and c for time to and a slant range, r.

for any time, t, other than to . If only the slant

range is measured, i may be obtained by either

numerical or graphical differentiation. On the other

hand, if f' is the measured quantity, integration mn "

be used to derive the necessary values for r. The

latter process requires a continuous record of r

from launch. Preferably, to should occur on the

upward leg of the trajectory and t on the downward

leg. Both times are, of course, restricted to that

portion of the trajectory where the missile is in

free flight and above the effective atmosphere.

With c and r0 as input, initial position for

time to may be readily obtained from the equations,

Po = r cos c (B.16)

Y = r sin c (B.17)

0 0 0

Solutions for the remaining trajectory parameters

require Equation B.15 which may be written in the

form,
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,o (ro o-Y oy ; o) (B.18)

Substituting for p in Equation B.10, yields,0

r = .Cp +((r0-y )/P0lT]2+[ yo+o=T-(l/2)gT 2) 2

(B.19)

After squaring and simplifying, this reduces to

A 2 + B o + C 0 (B.20)
0 0

Where,

A = 1 + (y0/Po)2

B = -[(gT+(2rory )/p2]

C = {[ror/P]2+[(r2-r2)/T2]+[2r r/T]

-glyo-(gT 2 )/4]}

One of the solutions for Equation B.20 yields a

false result and may be neglected. The valid solu-

tion for Y0 is obtained from:

y0 = [-B- /B2-4AC ]/2A (B.21)

may now be evaluated with Equation B.18 to com-

plete the solution.

A
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If a reliable estimate of r0 is available,

the method can be altered slightly to accept as

input coo r., and measurements of slant range,

rl and r2, for two times, t1 and t2, such that

to t < t2 . If T = (t -t ) and T 2 (-t ),

the equations of condition may be written as

[p +p T ]2+[yo+o T -(i/2)gT 2 ]2 = r2  (B.22)
0 0 1 0 0 1 1 1

[p+p T 22+[yo+T -(l/2)gT 2 ]2 = r2  (B.23)
00o2 00o2 2 2

Since p and y0 may be determined by Equations

B.16 and B.17, the above system contains the un-

knowns Po and yo . The solution of Equations B.22

and B.23 may be obtained rather quickly by employ-

ing an iterative type of computation in which an

initial approximation to the result is improved by

a series of corrections until the desired number of

significant figures is obtained.

A reduction problem, which occurred frequently

in the trajectory determinations here discussed,

required a trajectory determination from a series

of elevation angle measurements recorded as a function

of time. However, a system of equations derived
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from observations of elevation angle alone is weak

and the results unreliable. Fortunately, these

reductions were required for rockets that were

highly consistent in performance throughout the

powered portion of flight. Hence, slant range

could be rather accurQ.tely related to flight time

near burnout. When such an estimate of slant range

was combined with three observations of elevation

angle, the resulting set of equations provided

relatively reliable results.

When elevation angles alone were available,

the input for the computation consisted of r

the slant range for time to, and three elevation

angles, co 0 l' and E2s corresponding to times to,

tl, and t2 . The times were related so that

to < t < t2 with to occurring on the upward leg

of the trajectory and t2  on the downward leg if

possible. All three times were, of course, selected

for a drag-free portion of the trajectory.

Proceeding with the derivations, the assumed

value for r0 and the observed Eo may be substituted

directly into Equations B.16 and B.17 to determine
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the position of the rocket at the initial time,

to . With P and y0 known, Equations B.22 and

B.23 may be solved for the unknowns, ;o and y0

The resulting solution consists of

po = [D(Yo+ 1/2 gTIT2)+Epo]IF (B.24)

o = [(tan E 2 (p0+;oT 2 )-yo)/T 2]+gT2/2 (B.25)

where,

D = (T2 -T1 )

E = (TI tan E2-T 2 tan El)

F = T1T2 (tan El-tan £2)

B.4 RESULTS

The trajectories, which are presented in graphi-

cal form in Figures B.1 through B.54, were determined

from the best observations available for the par-

ticular rocket. Where possible, the computed tra-

jectories were derived from flight paths obtained by

missile tracking systems such as radar or the Cubic

system. For these flight paths, parabolic tra-

jectories were fitted to the tracking results. In
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the absence of data from radar or the Cubic system,

flight paths were computed by one of the methods

previously described. In general, elevation angle

measurements were preferred to observations of

slant range for input data; the latter, in turn,

were given preference over rate of change in slant

range. This order of priority was dictated by the

methods of measurement which resulted in better

accuracy in the angle measurements than in the

observations of slant range. In Figures C.10

through C.34 are plotted the azimuth-elevation data

derived from the GMD tracking system and used as

the principal source of angle measurements for the

trajectory determinations.

The parameters which characterized the motion

of each rocket are presented in Table B.1. In

addition, the source of the input data for the

trajectory determination of each rocket is indi-

cated. Elevation angle input is represented by c

and slant range by r. The value for g is an

average value based on the apogee of the flight
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path. In practice, initial estimates were adjust-

ed by an iterative procedure until tLe values for

g were consistent with the computed trajectory.

It should be observed that trajectories for

Rockets 8 and 9 were well determined by radar.

These trajectories were of sufficient duration that,

to obtain a better fit to the observations, p was

redefined by the equation:

S +p oT+(I/2)loT2 (B.26)

For Rocket 8, pO = - 0.000546 km/sec2 , and for

Rocket 9, p = - 0.000478 km/sec 2 .

A three-dimensional trajectory may be obtained

from the parameters of Table B.1 by adding the

following equations to the previous development:

x = p cos a (B.27)

z = p sin a (B.28)

where a is the azimuth angle measured clockwise

from north. A right-hand coordinate system is

formed by x, y, and z, in which y is the vertical,

x is positive north, and z is positive to the east.
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The origin of the system is located at Point John.

The unit of length in the table is the kilometer,

and the unit of time is the second, to is the time

after launch.

B.5 DISCUSSION

The accuracy of the computed trajectories is

primarily a function of the type of input data

used to determine the trajectory parameters. The

most accurate reductions consist of the results

derived from radar and Cubic tracking measurement.

Of moderate accuracy are those based on elevation

angle measurements. Finally, the reductions of

uncertain quality are those derived soley from

measurements of slant range.

The predominant error, in the parabolic

flight paths fitted to the reductions of radar and

Cubic tracking data, entered as a result of

assuming parabolic motion. The tracking error of

either system is negligible in comparison to the

error introduced by the curve-fitting procedure.

Hence, the error in the computed trajectory is

essentially equivalent to the error in fitting.
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Generally, the uncertainty in position for such

trajectories varies from 0.5 km on the upward leg

of the trajectory to 1.5 km on the downward leg.

In considering the quality of the trajectory

determination for other types of input data,

direct evaluation of the errors is impossible,

since there exists no well-defined trajectory for

comparison. However, Table B.2 offers a method

for indirectly evaluating the accuracy of those

trajectories which were derived from measurements

of elevation angles. Presented in Table B.2 are

estimates of altitudes at which the rockets

began to nose-over upon reentry into the effective

atmosphere on the downward leg of the trajectory.

This reentry phase is primarily a function of the

aerodynamic characteristics of the rocket. The

entries in Table B.2 were obtained by estimating

nose-over times from the occurrence of discon-

tinuities in magnetometer records and also in

GMD and AGC field strength measurements. For many

rockets, these times could be determined from all

three sources with an accuracy of from 1 to 5

seconds. Missile altitudes corresponding to
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nose-over times were extracted from the computed

trajectories for entry in Table B.2. When more

than one measurement of nose-over time was avail-

able for a rocket, an average value was used. It

is observed that the values are quite well

clustered for each rocket type. Since for every

rocket, the reentering vehicle consists of the

payload and last stage, it is reasonable to in-

clude the Honest John-Nike and Honest John-Nike-

Nike missiles together for comparison. Excellent

agreement in nose-over altitude is apparent for

both types of rockets regardless of the source

of the reduction data. This strongly suggests

that the accuracy of the trajectories based solely

on elevation angle data is equivalent to that of

trajectories derived from radar or Cubic tracking

data. However, other error evaluations indicate

that the latter may be slightly more accurate.

Hence, reasonable estimates of positional error

for trajectories determined from observations of

elevation angles would vary from 1 to 2 km over

the initial portion of the trajectory, to 2 to 3

km near reentry.
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Only two nose-over altitudes were available

for rockets of the D-4 type. These altitudes were

84.7 km for Rocket 22, and 59.7 km for Rocket 25.

These values are not necessarily in poor agree-

ment if it is considered that Rocket 25 was well

behaved, whereas the poor performance of Rocket

22 resulted in such erratic motion that the missile

very probably did not reenter tail first. The

low nose-over altitude for Rocket 25 is quite

reasonablesince the reentry vehicle for this

rocket had no tail fins.

It is difficult to estimate errors for

reductions derived from range-only measurements.

Huge errors could result from a shift in the fre-

quency of the transmitter. If such a shift were

abrupt, it could be observed and corrected.

However, no satisfactory method was available for

the detection of gradual shifts in the transmitter

frequency. A reasonable estimate of positional

error in such reductions would be 1 to 5 km on the

upward leg of the traJectory growing to 5 to 15 km

near reentry.
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Rocket 19 required special attention. The

only observation available consisted of a record-

ing of doppler frequency as a function of time.

This record was known to be of poor quality as a

result of frequency drift. In measuring nose-

over altitudes, it was observed that Rocket 19

turned over at 345 seconds after launch, whereas

Rocket 26 nosed over at 346 seconds. These

rockets were identical and were programmed to

fly identical trajectories. The flight path for

Rocket 26 was well determined by radar tracking.

Therefore, it was concluded that the best esti-

mate for the trajectory of Rocket 19 could be

obtained by using the results for Rocket 26, shifted

to the appropriate azimuth for Rocket 19.

In conclusion, positional errors probably vary

from 0.5 to 1.5 km for Rockets 8, 9, 11, 15, 17,

19, 20, 24, 26, 27, 28, and 29; from 1 to 3 km

for Rockets 2, 4, 6, 7, 10, 12, 13, 14, 18, 21, 23,

and 25; and from 1 to 15 km for Rockets 1, 5, and

22.

V
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TABLE B.2 ESTIMATED N0SE-OVER ALTITUDES FOR SELECTED ROCKETS
OF PROJECTS 6.2, 6.3, AND 6.4

Rocket Input Rocket Nose-over
Number Data Type Altitude Apogee

2 e NCa 83.6 km 100.3 km A

6 G NC 79.9 101.1
10 e NC 84.0 97.4
13 C NC 78.8 97.1
21 e NC 80.0 105.5

average 81.3

4 e and r HJNb  63.5 85.0
11 Cubic HJN 66.2 79.7
12 6 HJN 67.4 81.6
14 e HJN 68.1 93.9
17 Radar HJN 65.2 82.1

average 66.1

19 d HJN2c  66.9 162.6

20 Cubic HJN2 64.9 161.8
24 Cubic HJN2 63.4 154.0
26 Radar HJN2  66.9 162.6
27 Cubic HJN2 63.7 158.
28 Radar 69.2 152.0

average 65.8

aNike-Cajun

bHonest John-Nike
CHonest John-Nike-Nike

dBased on results of Rocket 26
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Figure B.1 Trajectory for Rocket 1, Star Fish..
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Figure B.2 Trajectory for Rocket 2, Star Fish.
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Figure B.3 Trajectory for Rocket 4, Star Fish.
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Figure B.4 Trajectory for Rocket 5, Star Fish.
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Figure B.5 Trajectory for Rocket 6, Star Fish.
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Figure B.6 Trajectory for Rocket 7, Star Fish.
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Figure B.7 Trajectory for Rocket 8, Star Fish.
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Figure B.8 Trajectory for Rocket 9, Star Fish.
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Figure B.10 Trajectory for Rocket 11, Blue Gill.
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* Figure B.11 Trajectory for Rocket 12, Blue Gill.
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Figure B.12 Trajectory for Rocket 13, Blue Gill.
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Figure B.13 Trajectory for Rocket 14, Blue Gill.
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Figure B.14 Trajectory for Rocket 15, Blue Gill.
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Figure B.15 Trajectory for Rocket 17. Blue Gill.
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Figure B.16 Trajectory for Rocket 18, Blue Gill.
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Figure B.18 Trajectory for Rocket 20, King Fish.
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Figure B.19 Trajectory for Rocket 21, King Fish.
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Figure B.20 Trajectory for Rocket 22, King Fish.
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Figure B.21 Trajectory for Rocket 23, King Fish.
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Figure B.22 Trajectory for Rocket 24, King Fish.

70

SECRET



600

440 ROCKET NO. 25:JAVELIN

5003250

4000

w 0

~16

200

606

00 - 100II

0100 200 300 400 500 600
HORIZONTAL RANGE - KM

Figure B.23 Trajectory for Rocket 25, King Fish.
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Figure B.24 Trajectory for Rocket 26, King Fish.
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Figure B.25 Trajectory for Rocket 27, King Fish.
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Figure B.26 Trajectory for Rocket 28, King Fish.
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Figure B.27 Trajectory for Rocket 29, King Fish..
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APPENDIX C

PROPAGATION EXPERIMENT: INSTRUMENTATION AND PERFORMANCE

C.1 GROUND INSTRUMENTATION AND PERFORMANCE

C.1.1 Three-Freauency Experiment Ground Instru-

mentation. The ground receiving antennas

for reception of signals at 37, 148, and 888 Mc are

shown in FiguresC.l, C.2, and C.3, respectively. The

performance of these antennas was satisfactory regard-

ing their basic physical and electrical properties;

however, because of their fixed beam orientationthey

were often receiving signals considerably off from their

main lobe axis, with attendant reduction in gainand

highly elliptical polarization. There is also a possi-

bility that their beam patterns were significantly dis-

torted because of their close proximity to each other and

to adjacent reflecting objects such as metal masts,

trailers, and overhead power lines and transformers.

Since the three-frequency experiment is basically a

differential measurement of the carrier frequency signal

phase,any differential distortion of the radiation phase

patterns of the ground antennas as a function of angle to

reception can introduce errors. The characteristics of
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the ground antennas are summarized in Table C.1

The helix lengths were shortened for Blue

Gill and King Fish events. This was done to

broaden the antenna pattern for improved reception

off axis of the helix in the event that the rocket

flight direction differed appreciably from pre-

dicted, as was the case for Star Fish. An addi-

tional set of 148-Mc helixes was installed for

Blue Gill and King Fish to cover the large

differences in launch angles of the rockets carry-

ing the three-frequency experiment. The proper

antennas were connected to the receivers by

means of remotely controlled coaxial relays. The

888-Mc antennas were put on mounts remotely con-

trolled in azimuth and elevation for proper

orientation to cover the different rocket flight

directions.

The ground antennas were designed and tested

by BRL and built by the General Development

Corporation, Elkton, Maryland.

Preamplifiers were placed at each antenna to

provide sufficient gain to overcome the loss in the

long feed cables to the receivers and give maximum
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signal-to-noise performance. The 37- and 148-Mc

preamplifiers, designed and built at BRL (Reference

69 ), had 40-db gain and a 3 to 4 noise figure.

The 888-Mc preamplifiers, supplied by the Applied

Research Corporation, had 30-db gain and a 7- to 8-db

noise figure.

The receivers were of the triple conversion

superheterodyne type with the original design pro-

viding for all of the local oscillator signals to

be derived from one frequency standard.to provide

phase-coherent doppler data at the three fre-

quencies. However, the synthesizer which provided

the nine harmonically related frequencies was

found to have excessive phase jitter on the highest

local oscillator frequency for the 148- and 888-Mc

receivers. A last-minute change in the design was

made at Johnston Island using separate local

oscillator frequency sources which cured the phase

jitter problem but left the 37- and 148-Mc doppler

outputs noncoherent, i.e., the dispersive doppler

data had to be corrected for local oscillator fre-

quency drift. The receivers were used in this

manner for Star Fish-for later events additional
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design changes were made which cured the phase

jitter problem and restored the phase-coherent

doppler outputs. Considerable difficulty was ex-

perienced with birdies (spurious signals) in the

888-Mc receiver output, which was serious because

of the possibility of locking the tracking filter

on to a false signal. The trouble was minimized

by separation of common power supplies from local

oscillator signal sources. The commercial 888-Mc

receivers were very unstable, requiring frequent

adjustment of the input RF stages and the automatic

gain control (AGC) dc amplifier stages.

Electronic, phase-locked tracking filters

(Reference 30 ) were used at the last intermediate

frequency (IF) output of each receiver channel.

These frequencies were 4, 16, and 96 kc at 37, 148,

and 888 Mc, respectively. These were very narrow

bandpass filters whose center frequency tracked

the input frequency. This was accomplished auto-

matically by the use of a phase-locked, servo-

controlled circuit. A large signal-to-noise im-

provement in the output as compared to the input

was obtained. Bandwidths of 25, 50, and 100 cps
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were used at 37, 148, and 888 Mc, respectively,

during the burning phases of the rockets. Reduced

bandwidths were used thereafter for maximum signal-

to-noise improvement. Another feature of the

tracking filters was their constant-amplitude out-

put which was necessary for the doppler adding and

differential mixing circuits. The filter enabled

tracking of signals which were less than the noise

at the receiver output. The tracking filters were

models IV and VIII, Interstate Engineering

Corporation, Anahiem, California, and Model 207,

Electrac Corporation, Anahiem, California.

The outputs of the tracking filters on the

37-, 148-, and 888-Mc channels were the respective

biased doppler frequencies. In order to remove

rocket spin and faraday effects, the biaseddoppler

from 37-Mc right-and left-hand circularly pola-

rized channels were added and doubled, giving 8 kc

plus twice the 37-Mc doppler frequency. Similarly,

the biased doppler from the 148-Mc oppositely

polarized channels was divided by four, added, then

divided by two, giving 8 kc plus one-half the 148-Mc

doppler frequency. The 37- and 148-Mc added outputs
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were combined in a differential mixer giving the

desired dispersive doppler data, i.e., one-half

the doppler at 148 Mc minus 2 times the doppler at

37 Mc.

A similar mixing process was used between the

148- and 888-Mc received signals giving the desired

dispersive doppler data.

Faraday rotation data was obtained by the

procedure outlined below.

If the right hand (RH) and left hand (LH)

37-14c tracking filter outputs are differenced, the

resulting electrical signal contains information

given by the expression;

(f f+f d+f ) - (f d- f f- f ) = 2(f + f ) (C.1)fd s d f s f s 37

where, ff is the faraday rotation frequency, fd is

true doppler frequency, and f is the rocket spin

frequency. In a similar fashion, differencing RH

and Lh 14b-Mc tracking filter outputs gives

2(f f+f S)14 8  (C.2)
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Differencing Equations C.1 and C.2 gives,

2(ff+f )148 - 2(ff +fs)37 (C.3)

However, (f ) 148= (fs)37 (spin effect is in-

dependent of frequency), so that the expression

may be rewritten,

(f f)148 -(f f )37

It follows then, the differencing operation

represented by the expression C.3 furnishes the

difference in faraday rotation rates at 148 and

37 Mc. A similar mixing process was used to

obtain the difference in faraday rotation between

888 and 148 Mc. A block diagram of the complete

mixing system is shown in Figure 5.7.

The complete data-handling system was con-

ceived, designedand built at BRL.

A combination of paper chart and magnetic

tape recorders was used for data recording.

Receiver AGC, spin, faraday, and dispersive

doppler data were recorded on two 8-channel Brush

recorders, one in each receiver trailer. Four
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Ampex FR 114 tape recorders were used, employing

2000-foot reels of tape run at 60 inches per

second to record the biased dippler frequencies

which were as high as 110 kc on the 888-Mc channel.

The received signal strengths were recorded

for the following freauencies: 36.44, 36.94,

145.76, 147.76, 874.56, and 886.56 Mc. Paper

chart recorders were used to record the AGC

voltages from the receivers and tracking filters.

Chart deflection was calibrated against input

sinal to the receiver preamplifier in decibels

below 1 milliwatt (dbm). The calibration signal

was fed out to the preamplifier in the antenna

field through a coaxial cable whose attenuation

was measured and accounted for in calibrating

the chart recorder. A remotely controlled coaxial

relay was used to disconnect the antenna and

connect the calibrate cable to the preamplifier input.

The remotely controlled relay permitted auick checks

of the calibration just prior to and following

the rocket flights, to minimize errors due to
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receiver drift. Calibration signals were obtained

from an HP 608D signal generator for the 37- and

147-Mc signals, and from a special crystal-

controlled generator for 888 Mc.

The basic source of standard frequencies

was a radio-frequency oscillator, Borg Corporation

Type 0-471 (XN-l)/U, which produced frequencies

of 100 kc, 1 Mcand 5 Mc with an accuracy of 2

parts in 108. Since frequencies other than the

basic 100 kc from the Borg standard were required

in various parts of the instrumentation system,

both divider and multiplier circuits were used

to cover the necessary range.

The Electronic Engineering Company's time

code generator, Model ZA-1935produced outputs

of 10 kc and 1 cps CW or pulsed, as well ac 1

pulse/minute and 1 pulse/10 minutes, all derived

from the 100 kc of the Borg standard. In addition,

the unit generated a time code suitable for re-

cording on magnetic tape and displayed this time

code on decimal indicators of hours, minutes,

and seconds. These were set to correspond with
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Universal Time received from WV. H.

There are two major functions performed

by the station timing system: (1) synchronized

control of data recording equipment, and (2)

indication of time on the recorded outputs.

Pulse shapers and inverters produced the desired

polarity, duration, and amplitude of signals

for the timing applications.

An analysis of the 888-Mc channel performance

disclosed several factors that caused the noisy

signals and short records. The 888-Mc channel

was originally designed for a 500-mw transmitter,

but the contractor could not meet the 500-mw output

specification in the time allotted, and instead

delivered transmitters which gave between

80- and 150-mw output, thereby introducing

a 7-db reduction in the system mar;in. The wide

divergence of rocket flight trajectories from

those preaicted caused off-beam reception in
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the 888-Mc ground helixes which introduced

another 3- to 6-db reduction in signal. The

local oscillator injection signal for the

888-Mc receiver had phase jitter that caused

a 4- to 6-db r.. iction in receiver sensitivity.

The 888-Mc rocket antennas had radiation

patterns which were quite deeply lobed because

of the large dimensions of the rocket compared

with the transmitted wavelength and the inter-

fering effects of the many other protruding

antennas nearby. The total effect of all of

these factors added up to between 20 and 30 db

of additional loss when they occurred simul-

taneously, which would account for the noisy

signals and short records observed in many

instances.

C.1.2 Satellite Experiment Ground

Instrumentation. The transmissions

received on the ground were the 54- and 324-

Mc harmonically related MW signals from
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the Transit 4A and 4B satellites. Three

independent tracking channels were used, two on

54 Mc and one on 324 Mc (Figure 5.8).

On both 54-Mc receiving channels, the antennas

used were standard dipoles with half-wavelength

elements placed horizontally, one-half wavelength

above the ground plane. One of the dipoles was

stationary throughout a satellite pass. The

second dipole was mounted on a pedestal which was

motor driven to rotate in azimuth at about 30 rpm

during the pass, this rate being large compared to

the predicted magnitude of the faraday rotation

rate (Figure C.4). The tracking channel associated

with the 54-Mc rotating dipole was used primarily

to obtain faraday rotation data. The antenna

rotation allowed determination of the direction

of faraday rotation and enabled more faraday phase

and rate fixes than were obtainable with a non-

rotating dipole.

Each time the direction of the incoming linearly

polarized signal (or major axis of an elliptically

polarized signal) became Derpendicular to the

length of the dipole. there was a minimum in signal

strength concurrent with a sudden 1800 phase shift.
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The antenna pedestal was equipped with a

rotary joint to feed the RF signal from the

antenna to the preamplifier. In addition, a

contact switch on the pedestal closed a few

milliseconds for each revolution of the antenna

and provided a marker pulse for determination

of the antenna orientation and rotation rate.

It had been anticipated that the rotating

joint feeding the signal from the rotating

dipole to the base might introduce an intolerable

amount of noise into the signal. However, it

was found that noise introduced had a negligible

effect on the remainder of the system. In many

cases, the rotating dipole data channel was

able to track the satellite over longer periods

of time than the fixed dipole channel.

The antenna used for receiving the 324-mic

signal was a right-hand, 8-turn helix (Figure C.5).

The first antennas tried were 324-Mc dipoles, but

these were unsatisfactory because the satellite
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radiated such a small amount of power at this fre-

quency that an antenna with some gain was required.

Because of the rotation direction of the component

of circular polarization of the radiated signal at

the satellite, a right-hand-polarized antenna was

needed.

Each antenna fed a preamplifier unit situated

at the antenna location. These preamplifiers were

designed and built at BRL. They had an overall

gain of 40 db, a noise figure of 4 db, and a pass-

band of 2 Mc. They exhibited excellent stability

and reliability under field conditions over long

periods of operation.

The output of the preamplifiers was fed through

long coaxial cables into the tracking station where

it served as the input to the receivers. In the

54-Mc channels, the Ners-Clarke Model 2501 special-

purpose receivers were used directly. These

were designed for the reception of AM and

CW signals, tunable over a range of 55 to 260 Mcand

had a noise figure of 6 db maximum at antenna input.

They were provided with a 50-ohm antenna input and

an additional 50-ohm input to the second RF ampli-

fier, to allow for the injection of a known reference

signal for comparison with the received signal.
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In the 324-Mc channel, it was necessary to

extend the operating range of the Model 2501

receiver. This was accomplished by the addition

of a range extender unit, Nems-Clarke Model

REU-300B. This unit was designed to operate in

a 50-ohm system, had a noise figure of 14 db, and

was tunable from 250 to 900 Mc.

A frequency synthesizer manufactured by

Rodhe and Schwarz provided the required RF in-

jection frequency into the receiver for the

reception of doppler information. The unit pro-

duced a continually adjustable frequency over the

range of 30 cps to 30 Mc from an internal or

external 100-kc source. Besides the adjustable

frequency, other outputs provided were 10-kc and

l-kc CW, and 10-kc and l-kc pulses. During

tracking operations, the output frequency remained

constant to within + 1 cps over a 20-minute period

of time.

A frequency multiplier was used in conjunction

with the synthesizer for frequencies above 30 Mc.

In the case of the 54- and 324-Mc Transit fre-

quencies, the frequency multiplier used the 27-Mc
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output of the synthesizer as input to two channels.

The first channel simply doubled the frequency to

54 Mc, while the second channel doubled, then

tripled, and again doubled the frequency to pro-

duce 324 Mc.

The basic function of the tracking filter

used (Reference 70 ) was to provide the detection

of doppler signals much weaker than the noise at

the output of the receiver. A signal-to-noise

improvement between 20 and 30 db was obtained by

use of an extremely narrow filter bandwidth

relative to the input signal bandwidth.

The outputs of the tracking filters on the

54-Mc and 324-Mc channels were audio-frequencies,

and corresponded to the biased doppler frequencies.

The 54-Mc doppler was multiplied by six and sub-

tracted from the 324-Mc doppler to obtain the

dispersive doppler. The equipment for doing this

was the multiplier-mixer unit (References 13 and 14 )

designed and constructed at the BRL.

The total doppler change during a pass of the

Transit satellite was about 2 kc on the 54-Mc

carrier and 12 kc on 324-Mc carrier. To accommodate
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the same type of tracking filter in each channel,

the frequency of the local oscillator was set to

provide an output frequency bias on the 54-Mc

channel of 2.5 kc at the time when the true doppler

frequency was zero. The bias frequency on the

324-Mc channel was then 15 kc. Therefore, during

the actual tracking operation, the doppler effect

caused the output frequency to vary between 1.5 kc

and 3.5 kc on the 54-Mc channel and between 9 kc

and 21 kc on the 324-Mc channel. Consequently,

the two biased doppler frequencies varied by

amounts exceeding one octave, so that conventional

frequency multipliers could be used in this appli-

cation.

The cross polarization nulls due to faraday

rotation of the 54-Mc signal received by the

rotating dipole antenna were superimposed on the

cross polarization nulls due to the antenna rotation.

The faraday fading frequency varied from a maximum

of about 0.3 cps when the satellite was south of

Johnston Island to zero when the satellite was

north of the Island. The antenna rotation fre-

quency was about 0.5 cps, giving an antenna fading
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rate of 1 cps. Hence, the faraday frequency acted

as a small frequency modulation on the antenna

rotation carrier. Therefore, the frequency of the

resultant signal, as it appeared at the correlation

output of the tracking filter, varied between the

limits of 0.7 cps to 1.3 cps. During periods of

very low signal levelthere was also present at

the correlation output varying amourts of noise

due to phase jitter which was not related to

faraday rotation. Since this noise was usually of

a frequency high compared with 1 cps, a very low

pass filter of 2-cps cutoff was introduced to

eliminate it. Using conventional construction,

this filter would have been too large to be practi-

cal. Therefore, a filter was designed to employ

electronic multiplication of reactances, resulting

in very satisfactory elimination of the noise.

The resultant signalas it was used with automatic

digitization equipment, introduced considerably

fewer spurious pulses than did a nonfiltered signal

The information recorded may be summarized as

follows: (1) doppler frequency on three data

channels, (2) AGC voltage on three data channels,
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(3) dispersive doppler, (4) one-pulse-per-second

timing, (5) WWVH time, (6) local oscillator fre-

quency, and (7) low pass filtered correlation.

The biased doppler frequency on one 54-Mc

data channel and the 324-Mc data channels was

also recorded on analog charts of frequency versus

time. To accomplish this, the output of the

tracking filter was put. into a frequency integrator.

The dc output of the integratorbeing proportional

to the input frequency, was recorded on a Varian

Associates paper strip chart recorder to give the

desired data.

The dispersive doppler frequency was recorded

on a paper strip chart recorder along with the

timing pulses, the AGC voltages, low pass filtered

correlation, and timing pulses. A Brush Instruments

Company 8-channel strip chart recorder was used.

It was important to have available on magnetic

tape the signals obtained by each receiving channel

during the satellite passes. This record served

as a backup in case of equipment failure in the

system and could be used to recover the original

data at a later time. Also, the data on the magnetic

tape was later used as input to automatic digitizing
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equipment in order to obtain the dispersive

doppler and faraday rotation throughout the pass.

A magnetic tape recorder, Ampex Model FR-114. was

used at the receiving station and at the data-

handling station to record and play back the re-

ceived signals.

After few satellite passes had been made,

it became evident that good signals could be

obtained on the large majority of passes which

were within + 600 miles of the Johnston Island

site. Because part of the tracking equipment was

also used for another experiment, it was decided

to confine the satellite tracking operations to

only those passes that were within the above

range. Improved signal on the 324-Mc channel

could have been obtained when the satellite was

close to the horizon if the antenna could have been

operated in a tracking mode. This was confirmed

by using an existing high-gain tracking antenna

of the Cubic Corporation facility on some selected

passes.

The stability of the internal oscillator in

the circuit for extending the frequency range of

the commercial receiver used at 324 1c was not
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completely satisfactory. A long warm-up time

was necessary to insure

adequate signal reception. Installation of a

crystal-controlled local oscillator would elimi-

nate this difficulty on any future operations.

In Tables C.2 through C.13 are summarized

the kinds of recordings made in the BRL trailers

for both the rocket and satellite propagation

experiments.

C.1.3 GMD Telemetry and Tracking Ground

Instrumentation. The purpose of

using the GMD radiosonde ground set was twofold:

(1) the GMD served as a backup telemetry system,

(2) the GMD served as a backup angular tracking

system. In the nose cones employed on Nike-Cajun

rocketsthere was insufficient space fc'the Cubic

Corporation (AME/DME) tracking beacon, and the

GMD beacon furnished the only source of tracking

information for these vehicles.

The GMD set, originally designed to track

a balloon-borne radiosonde transmitter in the

1660-to 1700-Mc frequency range, was modified

for rocket tracking. A pictorial view of the

tracker is shown in Figure C.6. Figure C.7 shows
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the components of the GMD tracking and telemetry

system. Three GMD sets were used, identified as

sets A, B, and C. The physical location of the

three GMD antennas relative to the control block-

house (Building 200) and the telemetry vans is

shown in Figure C.8. The control and recording

instruments inside of the GMD van are shown in

Figure C.9. Firing of the rockets automatically

initiated a one-second-interval recording of

azimuth and elevation data.

Modifications made to the GMD system were:

(1) a series resistor and output shunt capacitor

were attached to the receiver AGC in order to

record received signal strength, (2) the control

recorders were modified to accept a 1/sec printing

rate, (3) an automatic start relay system was

built into each recorder in order that the printer

would start as each rocket lifted, (4) tunnel

diode RF preamplifiers were used on Rockets 11

through 29. inclusivel with the exception of Rockets

13 and 17. The preamplifiers increased the signal-

to-noise ratio of the GMD recievers by a factor of

10 db.
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Signal strength recordings were made on

Brush type Mark II records. Each receiver AGC

was calibrated from -20 to -110 dbm in 2-db steps.

Response time tests of the receiver-recorder combi-

nation were also made. A signal decrease of 100 db

deflected the recorder pen from full scale to zero

in 90 msec; an increase of 100 db deflected the

pen from zero to full scale in 10 msec.

In order to calibrate the tracking mode of

the system, a position and angle survey was made

for each GMD set. The position of each set was

surveyed with respect to the Johnston Island grid

system. The reference used for angle measures

was the line from Point Joe to Point John which

had a true bearing of 65 degrees, 13 minutes, 19

seconds. In the Johnston Island grid system, the

position of each set was as follows: (1) A set,

North (N) 199, 670, East (2) 199, 705; (2) B set,

N 199, 714, E 199,682; (3) C set, N 199, 660,

E 199, 516. The accuracy of the survey was +1.0

foot.

Azimuth angles of each set were referenced

to true north; in order to determine these angles

accurately, a reference 1670-Mc beacon was placed
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on the northeast corner of the balcony on the air-

port control tower. The true azimuth angles foi

each tracker were measured by placing a transit

over the reference beacon and measuring the angle

between the star Polaris and each GMD set. These

measured angles were corrected for a bearing of

true north. The elevation angle between the

tracker and the reference beacon was also measured

with a transit. The accuracy of the measurements

was + one minute of arc. Prior to each series

of rocket flights, the sets were locked on the

reference beacon signal and the measured angles

were set on the dials of the tracker and control

recorder.

In Tables C.14 through C.40 are summarized

the GMD telemeter-tracking operations for each

rocket of Projects 6.2, 6.3, and 6.4 carrying

the GMD beacon. Figures C.10 through C.34 present

the GMD azimuth and elevation tracking data.

C.2 ROCKET INSTRUMENTATION AND PERFORMANCE

C.2.1 Three-Frequency Experiment Rocket

Instrumentation.

The rocket-borne instrumentation for the three-

frequency experiment consisted of a transmitting
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beacon and associated antennas. A block diagram

of the beacon is shown in Figure 5.1, and a

photograph in Figure 5.2. The beacon was 5.5

inches in diameter by 5 inches long and weighed

7.7 pounds. The fundamental frequency of 37 Mc

was generated by a transistorized, crystal-con-

trolled oscillator. The output of the crystal

oscillator was amplified by a transistor ampli-

fier to provide two outputs at 37 Mc. One out-

put was connected to the antenna and provided

a signal power of 150 mw. The other output

signal was fed to a 4-times frequency multiplier

consisting of two cascaded transistor doublers.

The 148-Mc output from the multiplier was ampli-

fied by a transistor amplifier to a power level

of two watts. One hundred fifty mw of this

power was diverted to the antennaand the remainder

was fed to a 6-times frequency multiplier. The

multiplier consisted of a cascaded varactor

doubler and tripler giving an output at 888 Mc of

150 mw.

The closely controlled temperature for the

crystal oscillator was obtained by using the heat-
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of-fusion principle (Reference 70 ). The

crystal was submerged in eutectic alloy, Cerrolow

117, which was partially melted prior to rocket

lift-off. The alloy had a melting point of

470C, which, by the heat-of-fusion principle,

provided a constant temperature until all of

the alloy was melted. A carefully predetermined

amount of alloy was melted prior to launch by an

externally controlled heating element to bring

the mixture up to a constant temperature and to

take care of any heat loss in the early part of

the flight. During the preflight thermal

preparation, a careful balance was maintained

between the amount of solid and melted alloy to

insure that at take-off sufficient alloy was

melted to furnish heat lost during the first

minute of flight, while leaving sufficient reserve

of solid material for absorbing heat in the

remainder of the flight.

The three-frequency beacon was powered by

mercury batteries with voltages of 4, 16, and

60 volts. The 4-volt battery powered the os-

cillator and had sufficient capacity to operate
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it for 500 hours. The oscillator was turned on

well in advance of firing to insure stable

operation. The 16- and 60-volt batteries could

power the beacon for 1 hour.

A Ledex stepping relay was used for turning

the beacon on and off remotely. rIonitor detectors

were used on the 37- and 888-Mc outouts, giving

4 volts at normal output. The de voltage from

these detectors was telemetered via the payload

telemetering system. The inside temperature of

the beacon can was also telemetered. Only

Rockets 11, 12, 14, 17, and 22 showed appreciable

changes in any of the telemetered monitors;

comments on these changes are given in Tables C.41

through C.58.

Remote indicators in the blockhouse were

available for monitoring beacon temperature, os-

cillator temperature, Ledex relay position,

oscillator heater voltage, and battery voltages.

A diagram of the beacon control system located at

the blockhouse is shown in Figure C.35.

The 37- and 148-Mc portion of the beacon was

originally designed at the University of Michigan
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under a previous contract with the BRL. Modi-

fications, improvements, fabrication, and test-

ing of the beacons were done by the BRL. The

888-Mc portion of the beacon was designed and

built by the Applied Research Corporation, Port

Washington, New York, under contract with the

BRL.

Preflight tests of the beacons indicated

two problem areas: (1) lowoutput power or complete

malfunctioning of the 6-times frequency multiplier

unitand (2) malfunc.oning of 37-Mc transmitting

transistor. The short time available for design

and production of the frequency multiplier units

forced the selection of a type of circuitry easily

produced in quantity; however, the units had poor

operating efficiency, low output power, and

critical tuning adjustments. These difficulties

were somewhat alleviated for the Blue Gill and

King Fish firings for which additional frequency

multipliers were madeutilizing an improved type

of circuitry having a higher output power.

Frequency drifts of 10 to 20 cps during

flight were observed in some beacon oscillators.
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because crystals were not available with turning

points (df/dt = 0) at the melting point of the

alloy (47°C). Most of the crystals had turning

points between 500and 600 C. Operation at 47°C

in these cases placed the operating point on the

steep negative slope of the crystal frequency

versus temperature coefficient (10 cps per degree

centigrade). The alloy method was very simple

and reliable, but securing large quantities of

crystals with turning points coincident with the

alloy melting point was very expensive.

Sudden, permanent shifts of beacon crystal

frequency of 20 to 30 cps were caused by

acceleration during rocket burning and after burn-

out. Host of the frequency shifts occurred at

burnout of the second Nike booster (approximately

60 g). The frequency variations, however, did not

interfere with the primary purpose of the three-

frequency beacon (i.e.,electron density measurements)

but did interfere with its secondary function of

doppler ranging.

Tables C.41 through C.58 present comments on

the 37-, 148-, and 888-Mc doppler and signal AGC,

131

SECRET



and on the high- and low-frequency dispersive

doppler. Also given is the quality of the

beacon performance, which was monitored in the

bdacon and telemetered on Channel 12 of the

telemeter system (10.5 kc). These telemetered

data were: (1) the RF voltage at the 37-Mc

output stage, (2) 888-Mc RF voltage at the

output of the 6-times frequency multiplier, and

(3) temperature of the beacon package. In five

rockets where the 37-Mc output power was

initially low, the output power at 888 Mc was

normal. This was possible because the input

signal to the frequency multiplier was taken

off ahead of the 37-Mc output stage.

Rocket antenna systems were designed to fit

the 9-inch-base-diameter Honest John-Nike pay-

load housing and the 18-inch-base-diameter Javelin

(more properly, Argo D-4) and Honest John-Nike-Nike

payload housings. One system used loop antennas

at 37 and 148 Mc and swept-back stub antennas at

888 Mc. The other system used shroud antennas

(Reference 71 ) at 37 and 148 Mc and stub

antennas at 6 Fc. A fiberglas nose cone was
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used over the antennas with each system. The

location and types of all rocket antennas used

on Projects 6.2, 6.3, and 6.4 are shown in

Figures 5.3 and 5.4. These figures show the

location of the three-frequency experiment

antennas relative to the other antennas on the

rockets.

The Honest John-Nike antenna system for

Project 6.3, is shown in the photograph, Figure

C.36. Trapezoidal-shaped loops formed of 1-inch-

wide copper strip were used at 37 and 148 Mc.

They were mounted mutually perpendicular to

minimize mutual coupling and radiation pattern

interference. Basically, the trapezoidal loops

were balanced loon antennas resonated with a

capacitor at the gap and matched to 50 ohms.

The 37-Mc loop was tan fed near the base at the

50-ohm point. The design of these loous was

based on the theory that a single-turn balanced

loop with a circumference of 0.3 wavelength or

less has a radiation pattern that is omni-

directional in the plane of the loop; also, its

pattern is independent of the physical shape of
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the loop. The pattern is negligibly affected

by the presence of a large, long rocket body if

the diameter of the rocket is less than one-half

wavelength. Radiation patterns of the 37-Mc loop

on the Honest John-Nike rocket on Project 6.3 are

shown in Figure C.37. The effect on the pattern

of the metal rods used w-th the AFCRL ion trap

and impedance probe experiments is also shown in

Figure C.37.

The loop used at 148 Mc was fed at the gap

through a two-capacitor matching circuit; radiation

patterns for the Project 6.3 Honest John-Nike

rockets are shown in Figure C.38. The 37-inch

metal rods below the 148-Mc loop caused difficulty

in obtaining a good radiation pattern off the

rocket tail. The rods reflected the signal nose-

ward. An acceptable radiation pattern was

obtained by aligring the 148-Mc loop parallel

to the 10-foot rods and insulating the rods from

the rocket body. The 10-foot rods were effectively

insulated from each other and the rocket body at

148 Mc by the inductor connected in series with

them for matching to the 3- to 12-Mc region for

the RF impedance probe experiment.
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Two stub antennas, phased 180 degrees, were

used at 888 Mc on the Project 6.3 Honest John-

Nike rockets. The stubs were mounted diametri-

cally opposite on the metal cylinder housing the

three-frequency beacon, and were swept back at

an angle of 45 degrees with respect to the

missile axis. Figure C.39 shows the radiation

pattern of this stub antenna system.

The Javelin and Honest John-Nike-Nike (Project

6.2) antenna system consisted of shroud antennas

at 37 and 148 Mc, and stub antennas at 888 Mc

(Figure C.40). A metal nose cone was used inside

the fiberglas nose cone to serve as a ground plane

for the shroud antennas. The 148-Mc antenna

system consisted of two shrouds mounted diametri-

cally opposite on the metal nose cone. The shrouds

were electrically phased 180 degrees with respect

to each other; the radiation pattern is shown in

Figure C.41. For the 37-Nc antenna, a single

shroud was used, providing a nearly omnidirectional

pattern in the plane of the shroud (Figure C.42).

Stub antennas were used at 888 Uc, mounted dia-

metrically opposite on the lower portion of the
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metal cone (Figure C.40). These stubs were

electrically phased 180 degrees with respect to

each other; radiation patterns are shown in

Figure C.43.

The rockets for Javelin Project 6.4 used

the same antennas as described above except that

the antennas were mounted at different places

on the rocket. Figures C.44 and C.45 show the

locations of these antennas. The radiation

patterns of the shroud antennas at the new

locations remained approximately the same as

before. The stub antennas were moved to the

upper portion of the metal nose conebut patterns

are not available for this location. The 888-Mc

stub antennas were redesigned for the King Fish

event to improve the mechanical mounting. The

redesigned stub is shown in Figure C.46.

The 37- and 148-Mc loop antennas were designed

and built by the BRL. The 37- and 148-Mc shroud

antennas were designed at the BRL and built by

the General Development Corporation, Elkton,

Maryland. The 888-Mc antennas used on the Star

Fish and Blue Gill events were designed and built

by the Marquardt Corporation, Pomona, California;
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those used on King Fish were designed and built

by the BRL. All antennas were tested and installed

by the BRL.

C.2.2 GMD Rocket Instrumentation. The GMD

beacon consisted of a cylindrical container 4

inches long by 4 inches in diameter, with an

approximate weight of four pounds. The beacon was

packaged in a design compatible with the three

vehicle configurations discussed in Section C.2.1.

The unit consisted of a modulator amplifier, a

transmitter using a 7533 cavity oscillator tube,

a silver-zinc 6-volt battery, a power change-over

Ledex switchjand a dc-to-dc converter with Zener-

regulated voltage output. A circuit diagram of the

beacon is shown in Figure C.47. The CW transmitter

was capable of being frequency modulated by a com-

posite signal in the standard IRIG subcarrier band.

The composite of eight FM modulated data signals

was used to FM modulate the transmitter. The RF

power output was 1 watt. Three frequencies, 1660,

1670, and 1680 Mc were used to avoid interference

when three rockets were in flight simultaneously.
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The beacon unit was capable of power change-

over from external to internal source by means

of a 28-volt pulse to a control circuit. Pro-

vision was made for battery checking and for

charging through the external connector. The

beacons were designed and built by the Marquardt

Corporation, Pomona, California.

The GMD beacon antenna system consisted

of three or four slot antennas and a matching

and phasing network. Three slots were used on

the 6- and 9-inch-diameter nose cones, and four

slots were used on the 18-inch-diameter nose

cones. The antenna assembly was matched to the

transmitter with a VSWR of 1 to 1.5 or better.

The antennas were designed and built by the

Marquardt Corporation, Pomona, California. A

typical slot antenna is shown in Figure C.48,

and antenna locations for the different rocket

nose cones used in Projects 6.2, 6.3, and 6.4

are shown in Figures 5.3 and 5.4. Antenna

radiation patterns are shown in Figures C.49 and

C.50.
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C.3 ROCKET DISPERSIVE DOPPLER

C.3.1 Star Fish Event. For the rockets launch-

ed in the Star Fish event, lack of coherency in the

ground-generated receiver injection frequencies pro-

duced an unknown bias frequency on the 37- and 148-Mc

dispersive doppler data. The expressions"37- and

148-Mc dispersive dopplei'and'148- and 888-Mc dis-

persive doppler"designate the dispersive doppler

obtained by combining the frequencies indicated.

Unfortunately, the bias frequency was not only un-

known but changed as a result of slight drifts in

the ground-based local oscillator during the course

of a rocket flight. The bias frequency was present

on the paper analog chart recordings of dispersive

doppler from the time the rocket beacons were turned

on (usually one minute before rocket lift) until

signal was no longer being received. Since the

rockets did not enter regions of ionization for 1

to 2 minutes after rocket lift, 2 to 3 minutes of

bias were available for study and analysis of

frequency and frequency drift. In an attempt to
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define and eliminate the bias, a least squares

approximation (usually a straight line) of the bias

frequencies was made with the constraint that the

integral under the least squares curve was equal to

the numerically integrated bias frequencies measured.

The least squares curve was then extrapolated for the

remainder of the rocket flight. Deviations from the

extrapolated curve were then taken as true dispersive

doppler data. Consequently, no great degree of

accuracy can be claimed for the dispersive doppler

data thus obtained, but later comparisons with data

from other sources indicated strongly that the dis-

persive doppler results can be accepted with a fair

level of confidence.

Plots of the integrated dispersive doppler

and dispersive doppler frequencies for the Star Fish

event are shown in Figures C.51 through C.56.

Comments on the data for the individual rockets

are in the following paragraphs.

The 37- and 148-Mc dispersive doppler data for

Rocket 1 (Figure C.51) was obtained from magnetic

tape recordings of the doppler signals by appropri-

ately multiplying and differencing digitally the
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data in a computer. The rocket entered regions of

ionization at 163 seconds after rocket lift.and

continuous dispersive doppler data was obtained

until 600 seconds after rocket lift, at which time

the 37-Ic signal was lost and not recovered for the

remainder of the flight. The absolute accuracy of

the integrated dispersive doppler may be subject to

question because of the long time interval over

which the extrapolated least squares bias curve was

employedbut it is felt that accuracy within + 15

percent is maintained at least up through rocket

apogee. Because of the poor quality of the 888-Mc

doppler, no usable 148- and 888-Mc dispersive doppler

was obtained for this rocket.

The 37- and 148-Mc dispersive doppler data for

Rocket 4 (Figure C.52) was measured exclusively

from the paper analog chart recordings. The

rocket entered regions of ionization at 65 seconds

after rocket lift.and continuous dispersive doppler

data was available until the rocket left the regions

of ionization at 222 seconds after rocket lift.

Since the dispersive doppler data was complete the

additional constraint that the integrated dispersive
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doppler must be zero before the rocket enters and

after it leaves ionized regions could be used to

define and eliminate the bias. As a result a

reasonably high level of confidence may be placed

in the dispersive doppler data. There was no usable

148- and 888-Mc dispersive doppler for this rocket.

The 37- and 148-1.1c dispersive doppler measure-

ments for Rocket 5 (Figure C.53) were obtained

exclusively from the paper analog chart recordings.

The rocket entered regions of ionization at 85

seconds after rocket lift, and dispersive doppler

data. was available until 230 seconds after rocket

lift. at which time the 37-1Ac signal became so dis-

torted in phase that measurements were no longer

possible. There was no usable 148-Mc and 888-!.c

dispersive doppler for this rocket.

The 37- and 148-1Mc dispersive doppler measure-

ments for Rocket 7 (Figure C.54) were obtained

from the paper analog chart recordings. The rocket

entered ionization at 105 seconds after rocket lift,

and dispersive doppler data was available until 205

seconds after rocket lift, at which time loss of

the 148-lic signal caused loss of dispersive doppler.
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Attempts to recover the 148-Mc doppler from magnetic

tape recordings were unsuccessful. Since the least

squares bias curve required extrapolation for only

100 secondsthe dispersive doppler data should be

reasonably accurate. There was no usable 148- and

888-Mc dispersive doppler for this rocket.

The 37- and 148-Mc dispersive doppler data for

Rocket 8 (Figure C.55) was derived from magnetic

tape recordings of the doppler signals by appropri-

ately multiplying and differencing digitally the

recorded signals in a computer. The rocket entered

regions of ionization at 151 seconds after rocket

lift.and data was continuous until 245 seconds

after rocket lift, at which time tne 37-Mc signal

became so distorted in phase that further recovery

of data was impossible. The dispersive doppler was

also measured from the paper analog chart recordings

and was in excellent agreement with that from

magnetic tape recordings of doppler signals but

was of somewhat shorter duration. Measurements

of the 148- and 888-Mc dispersive doppler were made,

but the data appeared to contain a rocket-spin-

induced error which could not be successfully

isolated.

143

SECRET



The 37- and 148-Mc dispersive doppler for

Rocket 9 (Figure C.56) was measured from a combi-

nation of paper analog chart recordings and magnetic

tape records of the doppler signals. The rocket

entered regions of ionization at 121 seconds after

rocket liftand data was continuous until 740

seconds after rocket lift.,at which time the 37-Mc

signal was lost. The accuracy of the data is

subject to question because of the long extra-

polation time for the least squares bias curve.

Excellent 148- and 888-Mc dispersive doppler was

available for this rocket from 121 seconds to 240

seconds after rocket lift. The agreement between

the 37- and 148-Mc and the 148- and 888-Mc dis-

persive doppler was extremely good over this time

period, which lends confidence to the bias cor-

rection used for the 37- and 148-Mc dispersive

doppler.

C.3.2 Blue Gill Event. For the Blue Gill

series of rockets, the lack of coherency in the

ground-generated receiver injection frequencies

was eliminated so that the problem of a bias on

the 37- and 148-Mc dispersive doppler no longer

existed. For all except one of the rockets for
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this seriesthe 37-Mc signal was blacked out or

heavily attenuated for extended time periods.

This was expectedand it was hoped to fill in

these periods with 148- and 888-Mc dispersive

doppler. However, a combination of spin-induced

errors and low 888-Mc signal levels defeated,

for all practical purposes, any usage of the 148-

and 888-Mc dispersive doppler. Plots of the

integrated dispersive doppler and dispersive doppler

frequencies for the Blue Gill event are shown in

Figures C.57 through C.60. Comments on the data

for the individual rockets are in the following

paragraphs.

For Rocket 11, the 37-Me signal blacked out

at H-zero which occurred 120 seconds after rocket

lift and was not reacquired until 220 seconds

after rocket lift. The rocket had encountered

no ionization before blackout occurred,and the

quality of the doppler data was so poor after

reacquisition of the 37-Mc signal that no 37- and

148-Mc dispersive doppler was obtained. The 888-Mc

signal suffered so much distortion in phase that

the 148- and 888-Me dispersive doppler could not

be measured.
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For Rocket 12 (Figure C.57), the 37-Mc signal

fell below receiver threshold 81 seconds after

rocket lift and was reacquired 163 seconds after

rocket lift. The rocket entered regions of ioniza-

tion 60 seconds after rocket lift and left ionization

196 seconds after rocket lift. Excellent 37- and

148-Mc dispersive doppler was obtained from 60 to

81 seconds and from 163 to 196 seconds. The 14 8-

and 888-Mc dispersive doppler data was good and in

excellent agreement with the 37- and 148-Mc data

from 60 to 81 secondsat which time the 148-Mc

signal became phase distorted to the extent that

measurement of dispersive doppler was impossible.

For Rocket 14 (Figure C.58), the 37-Mc signal

fell below receiver threshold 79 seconds after

rocket lift and was reacquired 230 seconds after

rocket lift. The rocket entered regions of ioniza-

tion 60 seconds after rocket lift and left ionization

at 244 seconds. Excellent 37- and 148-Mc dispersive

doppler data was obtained from the paper analog

chart recording from 60 to 79 seconds and from

230 to 244 seconds. The paper analog chart record-

ing was not made during rocket flight and the 888-Mc

doppler could not be recovered from magnetic tape,
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so there was no 148- and 888-Mc dispersive doppler

available for this rocket.

For Rocket 15 (Figure C.59), 37- and 148-Mc

dispersive doppler data was measured from the

paper analog chart recordings. The rocket entered

regions of ionization 54 seconds after rocket lift

and left ionization at 312 seconds. The dispersive

doppler data was continuous over this entire inter-

val and was of excellent quality except for a 10-

second period between 85 and 95 seconds. Since

the dispersive doppler frequency was very low

during this periodit is felt very little error was

made in measurement and the results should carry a

high level of confidence. Because of very dis-

torted data~there was no 148- and 888-Mc dispersive

doppler for this rocket.

For Rocket 17 (Figure C.60), the 37- and 148-Mc

dispersive doppler was measured from the paper

analog chart recordings. The rocket entered regions

of ionization 67 seconds after rocket lift, and dis-

persive doppler data was available until 110 seconds,

at which time the 37-Mc signal fell below receiver

threshold. The 37-Mc signal was reacquired 200
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seconds after rocket liftbut at this time the 148-Mc

was so badly distorted that no further dispersive

doppler was obtained. Phase distortions on the

888-Mc signal prevented the acquisition of any

usable 148- and 888-Mc dispersive doppler.

For Rocket 18, indications are that the level

of ionization in the regions traversed by this rocket

were so low that no measurable dispersive doppler

was produced.

C.3.3 King Fish Event. For the King Fish

series of rockets, considerably more complete,

reliable data was obtained than for the two events

discussed earlier. For Rockets 19 and 25, extensive

usable 148- and 888-Mc dispersive doppler was measured

after some corrections were made for a rocket-spin

function error which appeared on the dispersive

doppler channel. Plots of the integrated dispersive

doppler and dispersive dopoler frequencies for the

King Fish event are shown in Figures C~l through C.67.

Comments on the data for individual rockets are in

the following pararraphs.

Rocket 19 (Figures C.61 and C.62) was in the

air at time of burst and all three frequencies

blacked out at burst time. The 37-"c signal was out
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for about 41 seconds, the 148-Mc signal was out

for about 22.5 seconds, and the 888-Mc signal was

out for about 2 seconds. The rocket was not in

a region of ionization prior to burst time. The

37- and 148-14c dispersive doppler was excellent

in quality after reacquisition of the 37-Mc signal

at 161 seconds after rocket lift until the rocket

left ionization at 340 seconds. The 148- and

888-Mc dispersive doppler channel for Rocket 19

showed data even prior to the time the rocket entered

regions of ionization. After some study, it was dis-

covered that this apparent dispersive doppler

frequency was a direct function of the rocket spin

rate. Realistic data was obt&ined from the time the

148-mc signal recovered at 142.5 seconds after

rocket lift until 330 seconds after rocket liftland

a correction was then made to the data based on

the rocket spin rate function determined from

pre-burst observations. The resulting 148- and 8 88 -?c

dispersive doppler showed excellent agreement with

the 37- and 148-FIc dispersive doppler.

For Rocket 22 (Figure C.63), the 37- and 148-Ic

dispersive doppler data was measured from the paper

analog chart recording. The rocket entered regions
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of ionization at 110 seconds after rocket liftand

excellent continuous dispersive doppler data was

obtained from that time to 350 seconds after rocket

lift. There was no usable 148- and 888-Mc dispersive

doppler for this rocket.

Rocket 25 (Figures C.64 and C.65) entered

regions of ionization 82 seconds after rocket lift.

The 37- and 148-Mc dispersive doppler data was

obtained from doppler data digitized from magnetic

tape recordings from 82 seconds to 255 seconds

after rocket lift, after which time accurate re-

covery of 37-Mc doppler from magnetic tape was not

possible. Even prior to 255 seconds, the 37-Mc

doppler was considerably distorted in phasewhich

could easily result in some errors in the derived

dispersive doppler. The confidence level placed

on the 37- and 148-Mc dispersive doppler must

necessarily be degraded because of the poor quality

of the 37-Mc signal. The paper analog chart record-

ing for Rocket 25 yielded 148- and 888-1c dispersive

doppler. As with Rocket 19, the data was biased

by a frequency which was a function of the rocket

spin rate. The data was corrected for this bias,
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and dispersive doppler was thus obtained from 82

seconds after rocket lift to 290 seconds after

rocket lift. There is reasonably good agreement

between the 37- and 148-Mc and 148- and 888-Mc

dispersive doppler, but considerably more confidence

should be placed in the 148- and 888-Mc data.

Rocket 27 (Figure C.66) entered regions of

ionization at 56 seconds after rocket lift and left

ionization at 339 seconds. Good continuous 37-

and 148-Mc dispersive doppler data was obtained

over this entire interval. The quality of the

148- and 888-Mc dispersive doppler data was question-

ablesand, in view of complete coverage by 37- and

148-Mc data, no attempts at measuring 148- and 888-

Mc dispersive doppler were made.

Rocket 28 kFigure C.67) entered regions of

ionization 63 seconds after rocket lift and left

ionization approximately 330 seconds after rocket

lift. Excellent 37- and 148-Mc dispersive doppler

was obtained fran63 to 162 seconds and 295 to 330

seconds except that an uncertainty of one cycle

in the integrated dispersive doppler exists over

the latter interval. A combination of spin modulation
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on the dispersive doppler with intermittent loss

of the 148-Mc signal to below-receiver threshold

made it impossible to retrieve dispersive doppler

data between 162 and 295 seconds. There was no

usable 148- and 888-Mc dispersive doppler data

for this rocket.

The ionization level in the regions traversed

by Rocket 29 was apparently too low to produce

any dispersive doppler.

C.4 SIGNAL DURATION AND STRENGTH

C.4.1 Signal Duration Graphs. The duration

of received signals from all rocket-borne trans-

mitters used in Projects 6.2, 6.3, and 6.4 are

shown in Figures C.68 through C.95. The minimum

useful signal level was taken as that level for

each system which would provide readable output

data.

C.4.2 Signal Strength Graphs. Received

signal strength recordings versus time were made

of all of the three-frequency beacon experiment

signals, the VHF telemetry, and the GMD signals.

These analog signal strength recordings were read

and the data replotted as a function of slant

range between the rocket and the launch site.

The signal strength measurements are shown in

Figures C.96 through C.254. A predicted value of
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signal strength versus slant range has been included

to permit interpretation of signal caanges from

causes other than increasing slant range. The

system parameters used to prepare the predicted

signal strength versus slant range curve for the

Star Fish event are given in Table C.59.

The propagation attenuation at 1 km (item 6,

Table C.59) was calculated using the equation;
A = 37.8 + 20 log F + 20 log D, (C.4)

where, A is the free-space attenuation in db assuming

isotropic antennas, F is the frequency in I11c, and D

is the distance from transmitter to receiver in

miles. The received signal strength in dbn (item 7,

Table C.59) was the algebraic sum of items 3, 4, 5

and 6 in Table C.59. To construct the predicted

signal strength versus slant range curve, use was

made of the relation between attenuation and distance

given in Equation C.4 which states that the attenuation

increases 20 db for each decade increase in distance.

Certain of the telemetry transmitters had 10-watt

output; instead of the 2-watt level assumed in Table

C.59, which increased the predicted signal levels

by 7 db. Also, certain of the rockets used linearly

polarized telemetry antennas instead of the circular

polarized antennas assumed in Table C.59, which

decreased the predicted signal values by 3 db. The
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predicted 148- and 888-Mc signal levels for the Blue

Gill and King Fish events were reduced 5 db because

of the shortened helix antenna length used. Figure

C.255 shows the predicted signal levels versus slant

range for the three-frequency, VHF TM, and GMD

systems used on the Star Fish event. Figure C.256

shows similar information for the Blue Gill and King

Fish events.
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Figure C.1 Photograph of 37-Me crossed dipole antenna. (BRIL phuto)
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Figure 0.9 GMD recording van interior. (BLR photo)
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Figure C.10 GMID azimuth and elevation versus time for Rocket 1, Star Fish.
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Figure C.11 GMD azimuth and elevation versus time for Rocket 2, Star Fish.
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Figure C.12 GMD azimuth and elevationi versus time for Rocket 3, Star Fish.
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Figure C.13 GMD azimuth and elevation versus time for Rocket 4, Star Fish.
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Figure C.14 GMD azimuth and elevation versus time for Rocket 5, Star Fish.
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Figure C.15 GMD azimuth and elevation versus time for Rocket 6, Star Fish.
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Figure C.16 GMD azimuth and elevation versus time for Rocket 7, Star Fish.
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Figure C.17 GMD azimuth and elevation versus time for Rocket 8, Star Fish.
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Figure 0.19 GMD azimuth and elevation versus time for Rocket 10, Blue Gill.
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Figure C.20 GMD azimuth and elevation versus time for Rocket 11, Blue Gill.
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Figure C.21 GMD azimuth and elevation versus time for Rocket 12, Blue Gill.
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Figure C.23 GWID azimuth and elevation versus time for Rocket 14, Blue Gill.
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Figure C.24 GMD azimuth and elevation versus time for Rocket 15, Blue Gill.

252

SECRET



90 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

LAUNCHER ELEVAION (82.50)

So DESIRED ROCKET ELEV. (800)

70 -EEAIN150

LAUNCHER
AZIMUTH

____________(1430) I

w h

w w

-50 130'
Z bJ

0DESIRED
4 ROCKET

> 40 AZIMUTH 120w AZMT
.j- --- (1201 )

30 110

20

10 ROCKET NO. 17: NJ - N____
LIFT TIME 1
1021: 49 Z 26 OCT 1962
H +-22 MINUTES 

I

0 100 200 300
TIME FROM LIFT-SECONDS

Figure C.25 GMD azimuth and elevation versus time for Rocket 17, Blue Gill.
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Figure C.28 GMD azimuth and elevation versus time for Rocket 21, King Fish.
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Figure C.29 GMD azimuth and elevation versus time for Rocket 23, King Fish.
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Figure C.30 GWID azimuth and elevation versus time for Rocket 24, King Fish.
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Figure C.31 GMD azimuth and elevation versus time for Rocket 26, King Fish.

259

SECRET



90
LAUNCHER ELEVATION ( 86.5*).
DESIRED ROCKET ELEV. (85)

7'0

wI

60 .140

0 (150 30

ROCKET
z ZMT

30 AZIMUTH 1IO 4

20 ___

10 ROCKET NO. 27: HJ-N-N ___

LIFT TIME 1
1223:36 2 I NOV. 62
(H + 13.5 MINUTE)

0 -

0 100 200 300 400
TIME FROM LIFT-SECONDS

Figure C.32 GMD azimuth and elevation versus time for Rocket 27, King Fish.
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Figure C.33 GMD azimuth and elevation versus time for Rocket 28, King Fish.
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Figure 0.40 Photograph of 3-frequency beacon antennas on Javelin and

Honest John-Nike-Nike rockets, Project 6.2. (BRL photo)
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Figure C.44 Three-frequency beacon antennas on Javelin rockets, Project 6.4.
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Figure C.48 Photograph of 1380-Mc slot antennas on
Nike-Cajun rockets. Project 6.3. (BRL photo)
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Research"; Final Report; December 1959; University of

Michigan, College of Engineering, Ann Arbor, Michigan;
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71. V. W. Richard; "The Shroud Antenna"; BRL Memo-
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Cloud"; POR-2017; Ballistic Research Laboratories, Aberdeen
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POR-2019; Air Force Cambridge Research Laboratories, Bedford,
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Cubic Corporation, San Diego, California; Confidential.
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